If you asked me if my field is global, I’d snap-answer “Of course.” After all, less than half a year ago I was at a meeting in Odaiba, the newest section of the Tokyo waterfront. I hope that our hosts at the Tokyo International Exchange Center are doing well in the wake of the recent earthquake — especially since Odaiba is reclaimed land and has been subject to serious liquefaction.

But outside of international conferences and scientific collaborations, it’s easy to lose track of the degree to which the sciences are truly global. This came up earlier today because I was making this:

Minimal medium agar base

To make 1 liter…

  • 334 mg K2SO4
  • 4.5 g K2HPO4
  • 1.6 g KH2PO4
  • 16 mg MgSO4
  • 10 g agar

If this looks unfamiliar, that’s because it’s not one of the default bacterial media. It’s adapted from this paper by David Gutnick et al, where a similar medium base was used to test some six hundred compounds as potential carbon or nitrogen sources in Salmonella. Yes, I really did go back about four decades to scour a materials and methods section for a media recipe. Microbiology buffs may also want to check out the senior author on that paper.

But what held my attention today was not the historic nature of my recipe’s inspiration, but three little words on the side of the bottle of potassium sulfate:

Product of Japan

Hm. So where does my minimal medium come from? Here’s the sourcing breakdown, ingredient by ingredient:

  • K2SO4 – Japan
  • K2HPO4 – USA
  • KH2PO4 – Japan
  • MgSO4 – Japan
  • agar – Portugal

Wow. That might lead one to wonder how the chemical manufacturers of Japan are doing these days. Am I going to find myself lacking magnesium sulfate in the near future? Should I stock up? I found it particularly curious that the dibasic potassium phosphate came from the United States but the monobasic potassium phosphate is from Japan.

The truth is that these are all very common laboratory chemicals, and none of them will come from just one source, so even if one country suffers an industrial downturn, researchers will be okay. But there are many less frequently used chemicals that will have a sole source. We’ve seen this in our own work, where we have quite literally purchased the last stock in the entire world of certain items – items that won’t be replaced as far as we know.

It’s apparent that these “single source” compounds are especially vulnerable to problems in the supply chain. Maybe the country has a natural disaster, or the technician who purifies that compound retires. But beyond these obvious cases, the sourcing on my media components highlights how much of the research we carry out on a day-to-day basis can be stopped cold by disruptions to modern just in time supply chains. If production of monobasic potassium sulfate suddenly halts in Japan, maybe there are facilities elsewhere, but no back inventory.

Do you keep a back supply of critical chemicals on site in your lab? How long can your research lab run without resupply? It may seem curious to think about protecting your lab against natural disasters halfway across the world, but someday it might just mean avoiding a whole-lab shutdown for weeks because your access to one critical chemical has dried up.


One Comment

  1. Tim
    Posted April 13, 2011 at 11:42 am | Permalink

    Like someone said to me about a decade ago, just-in-time makes you very vulnerable to interruptions and may not always be worth it. Big inventory stocks may be less efficient but more robust in the face of unforeseen circumstances.

Leave a Reply

Your email address will not be published. Required fields are marked *